
Synthesizing Highly Expressive SQL
Queries From Input-Output Examples

Chenglong Wang, Alvin Cheung, Ras Bodík
University of Washington

http://scythe.cs.washington.edu

http://scythe.cs.washington.edu

Tasks SQL Query

Select the id for
user “Tom”

Select id
From table
Where name = “Tom”

Select rows with
maximum value for

each user.

Calculate moving
average over id.

Select x.id, x.customer, x.total
From PURCHASES x
Join (Select p.customer,
 Max(total)
 From PURCHASES p
 Group By p.customer) y
On y.customer = x.customer
 And y.max_total = x.total

Select a.ord, a.val, Avg(b.val)
From t As a Join t As b
Where b.ord <= a.ord
Group By a.ord,a.val
Order By a.ord

Problem: Advanced SQL operators make SQL powerful but hard to master.

Synthesize queries from …?

Input Example

AuthorId AuthorName

1 Alice

2 Bob

3 Carol

BookId AuthorId Title

1 1 aaa1

2 1 aaa2

3 1 aaa3

4 2 ddd1

5 2 ddd2

19 3 fff1

20 3 fff2

21 3 fff3

22 3 fff4

Output Example

BookId AuthorId AuthorName Title

1 1 Alice aaa1

2 1 Alice aaa2

4 2 Bob ddd1

5 2 Bob ddd2

19 3 Carol fff1

20 3 Carol fff2

Constants

{2}

Aggregation Functions
(Optional)

{ }Count, Max,
Min, Sum, Avg …

Key: The synthesizer takes inputs that users can provide online.

Talk Outline

• Motivation & Problem Definition
• Synthesis Algorithm

• Evaluation on Stack Overflow Posts

constants

aggregation
functions

Select b.BookId, a.AuthorId,
 a.AuthorName, b.Title
From Author a Join
 Book b
 On a.AuthorId = b.AuthorId
Where (Select count(*)
 From book b2
 Where b2.bookId <= b.BookId
 And b2.AuthorId = b.AuthorId
) <= 2;

Select *
From (Select oid, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
Join T1
On T3.oid = T1.uid

Select *
From (Select oid, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
Join T1
On T3.oid = T1.uid

Running Example
Task: Collect the max vals below 50 for all oid groups in T2 and join them with T1.

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2
oid val
1 30
1 10
1 10
2 50
2 10

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Constants = { 50 }

AggrFunc = { }Max, Min

Select *
From (Select oid, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
Join T1
On T3.oid = T1.uid

Basic Algorithm: Enumerative Search

2 4
6

8

add(2, 4)

add(4, 4)

add(2, 2)

mul(2, 2)

add(2, add(2, 2)) = 6
add(2, mul(2, 2)) = 6

Input: 2 Output: 6 Operators: add, mul

add(2, add(2, 2))

mul(2, add(2, 2))
add(2, mul(2, 2))

mul(2, mul(2, 2))

Synthesize Distributed protocols,
Super-optimization

Key: Compressing the search space by memoizing values.

Select *
From T1
Where id > 1

Select *
From T1
Where True

Select *
From T2
Where val < 50

……

Select *
From T2
Where val = 50

Select *
From T1
Where id ≥ uid

……

T4

oid val
1 30
1 10
1 10
2 10

id date uid
2 11/21 3
4 12/24 2

oid val
2 50

T3

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Out

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Input: T1, T2 Output: Tout Operators: Select, Join, Aggr

Select *
From (Select * From T1)
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

oid MaxVal
2 50

id val
1 30
2 30
4 30
1 10
2 10
4 10
1 50
2 50
4 50
1 10
2 10
4 10

T5

oid MaxVal
1 30
2 10

T6

id date uid oid MaxVal
2 12/25 1 1 30
4 12/24 2 2 10

id date uid oid MaxVal
2 11/21 3 2 50

Select oid,
 Max(val)
From T4
Group By oid

Select id, val
From T3
Join T4
On uid = oid

Select id,
 Max(uid)
From T3
Group By id

Select *
From T3
Join T2
On True

Select oid,
 Max(val)
From T42
Group By oid

Select oid,
 Max(val)
From T4
Group By oid
Having maxVal < 50

……

……

Select *
From T3
Join T5
On id = oid

Select *
From T3
Join T5
On uid = oid

Select *
From T3
Join T52
On id = oid

……

Select *
From T31
Join T5
On id = oid

Select *
From T31
Join T51
On id = oid

Select *
From T32
Join T52
On id = oid

Select *
From T1
Where id > 1

Select *
From T1
Where True

Select *
From T2
Where val < 50

……

Select *
From T2
Where val = 50

Select *
From T1
Where id ≥ uid

……

T4

oid val
1 30
1 10
1 10
2 10

id date uid
2 11/21 3
4 12/24 2

oid val
2 50

T3

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Out

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Input: T1, T2 Output: Tout Operators: Select, Join, Aggr

Select *
From (Select * From T1)
Join (Select id, Max(val)
 From T2
 Where val < 50
 Group By oid) T3
On T3.oid = T1.uid

oid MaxVal
2 50

id val
1 30
2 30
4 30
1 10
2 10
4 10
1 50
2 50
4 50
1 10
2 10
4 10

T5

oid MaxVal
1 30
2 10

T6

id date uid oid MaxVal
2 12/25 1 1 30
4 12/24 2 2 10

id date uid oid MaxVal
2 11/21 3 2 50

Select oid,
 Max(val)
From T4
Group By oid

Select id, val
From T3
Join T4
On uid = oid

Select id,
 Max(uid)
From T3
Group By id

Select *
From T3
Join T2
On True

Select oid,
 Max(val)
From T42
Group By oid

Select oid,
 Max(val)
From T4
Group By oid
Having maxVal < 50

……

……

Select *
From T3
Join T5
On id = oid

Select *
From T3
Join T5
On uid = oid

Select *
From T3
Join T52
On id = oid

……

Select *
From T31
Join T5
On id = oid

Select *
From T31
Join T51
On id = oid

Select *
From T32
Join T52
On id = oid

Problem: Value-based compression is inefficient & ineffective.

Challenge 1: Large number
of queries per-stage.

~500,000 in the last stage.

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 1 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 1 2 10
4 12/24 2 2 10

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 1 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 1 2 10
4 12/24 2 2 10

Challenge 2: Big tables
1,889 --> 42,600 cells

Insight: Decompose Search Process

Search SQL queries

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Insight: Decompose Search Process
With Abstract Queries

Search abstract
SQL queries

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Instantiate
Abstract
Queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

1. Prune query families
If a skeleton cannot be instantiated
to return output, prune all queries
with the skeleton

2. Speed up
predicate synthesis

Queries whose predicates are holes.

Insight: Decompose Search Process
With Abstract Queries

Search abstract
SQL queries

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Instantiate
Abstract
Queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

1. Prune query families
If a skeleton cannot be instantiated
to return output, prune all queries
with the skeleton How?

Evaluating Abstract Queries
with Over-Approximation

Select id, date
From T1
Where □

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T1 Join T2
On □

T2
oid MaxVal
1 30
2 10

Summary2
id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10

Select id, date
From T1
Where id <= 2

id date uid
1 12/25 1
2 11/21 3

⊆

Inductively defined
over abstract SQL

operators

Summary
id date
1 12/25
2 11/21
4 12/24

Key: Evaluating abstract queries into over-approximations of concrete query results.

Pruning with Abstract Queries

Select *
From T1
Where □

Select *
From T2
Where □

T3

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T4
oid uid
1 30
1 10
1 10
2 50
2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Input: T1, T2, Output: Tout, Operators: Select, Aggr, Join

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

⊆

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10⊄

Select oid,
 Max(val)

From T4
Group By oid
Having □

Select id,
 Max(uid)
From T3
Group By id
Having □

Select id,
 Max(date)
From T3
Group By id
Having □

T5

oid MaxVal
1 30
1 10
2 50
2 10

id uid
1 1
2 3
4 2

id date
1 12/25
2 11/21
4 12/24

Select *
From T3
Join T5
On □

Select *
From T3
Join T4
On □

Select *
From T2
Join T4
On □

Select *
From T1
Join T3
On □

T6
id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 3 1 30
4 12/24 2 1 30
1 12/25 1 1 10
2 11/21 3 1 10
4 12/24 2 1 10
1 12/25 1 2 50
2 11/21 3 2 50
4 12/24 2 2 50
1 12/25 1 2 10
2 11/21 3 2 10
4 12/24 2 2 10

id date uid id date uid
1 12/25 1 1 12/25 1
2 11/21 3 2 11/21 3
4 12/24 2 4 12/24 2
1 12/25 1 1 12/25 1
2 11/21 3 2 11/21 3
4 12/24 2 4 12/24 2
1 12/25 1 1 12/25 1
2 11/21 3 2 11/21 3
4 12/24 2 4 12/24 2

✓

⨉Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

On average, number of
tables generated is 7× less

v.s. concrete case.

 Search with Abstract Queries

Search abstract
SQL queries

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Instantiate
Abstract
Queries

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select oid,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select oid,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

2. Speed up
predicate synthesis

1. Prune query families
In average over 90% of queries
skeletons are pruned. ✓

Predicate Search Space

Select *
From (Select *
 From T1
 Where □)
Join (Select oid, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

True,
False,

uid < id,
……

uid < id And uid > val

True,
False

val < 50,
val > id,

……

True,
False,

MaxVal < 50,
……

True,
False,

T1.uid = T3.oid,
T1.id = T3.oid,……

Challenge: Large number of predicate combinations to search.

~1000

~500

~500
~1000

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

T5
oid val
1 30
2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Enumerative Predicate Synthesis

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

T5
oid val
1 30
2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Enumerative Predicate Synthesis

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

T5
oid val
1 30
2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Enumerative Predicate Synthesis

Computation overhead

Inefficient
representation

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

T5
oid val
1 30
2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Enumerative Predicate Synthesis

oid val
1 30
1 10
1 10
2 50
2 10

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
1 10
2 50
2 10

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30

……
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

“Evaluating abstract
queries into over-
approximations of

concrete query results.”

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

T5
oid val
1 30
2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Enumerative Predicate Synthesis

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

Select *
From T2
Where True

Select *
From T2
Where oid < val

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50 Select *

From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T1
Where True

Encoding Tables using Bit-vectors

1
1
1
0
1

1
1
1
0
1

1
1
1
0
1

1
1
1
0
1

1
0
0
0
1

1
0
0

1
0
1

1
1
1

oid val
1 30
1 10
1 10
2 50
2 10

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

oid val
1 30
1 10
2 50
2 10

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30

……
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10

1
0
.
.
.
1

1
0
.
.
.
1

1
0
.
.
.
1

Computation overhead

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal <= 50

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Optimize computation: Grouping Predicates

1
0
0
1

1
0
1
0

1
0
0
0

Having oid < mVal
Having True

1
1
1
0
1

1
1
1
0
1

Problem: need to
perform 2 ⨉ 3 operations

to get only 3 results.

oid val
1 30
1 10
1 10
2 50
2 10

oid mVal
1 30
1 10
2 50
2 10

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Discovery: Grouping
predicates on the
summary table.

Alternative inputs
from its subquery

All possible outputs
of this query

Number of predicates
reduced by 40,000⨉

Select *
From T2
Where True

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oidoid val

1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

oid val
1 30
2 10

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having oid < mVal

Select *
From T2
Where oid < val

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

T3
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T5
oid val
1 30
2 10

T6
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where val ≤ 50

Select *
From T2
Where val < 50

oid val
1 30
1 10
1 10
2 10

T4
oid val
1 30
1 10
1 10
2 10

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where True

Enumerative Predicate Synthesis

Select *
From T2
Where True

Select *
From T1
Where id=uid

Select *
From T1
Where id<uid

Select *
From T3
Join T5
On True

Select *
From T3
Join T5
On id < oid

Select oid,
 MAX(val)
From T4
Group By oid
Having mVal < 50

Select oid,
 MAX(val)
From T4
Group By oid
Having True

Select *
From (Select *
 From T1
 Where □) As T3
Join (Select id, Max(val)
 From T2
 Where □
 Group By oid
 Having □) T5
On □

Select *
From T2
Where □

Select oid,
 MAX(val)
From T4
Group By oid
Having □

Select *
From T3
Join T5
On □

Select *
From T1
Where □

T2
oid val
1 30
1 10
1 10
2 50
2 10

T1
id date uid
1 12/25 1
2 11/21 3
4 12/24 2

Out
oid date uid oid MaxVal
1 12/25 1 1 30
4 12/24 2 2 10

Select *
From T2
Where val < 50

Select *
From T3
Join T5
On uid = oid

Select *
From T1
Where True

Grouping Predicates + Bit-vector Representation

1
1
1
0
1

1
1
1
0
1

1
1
1
0
1

1
1
1
0
1

1
0
0
0
1

1
0
0

1
0
1

1
1
1

oid val
1 30
1 10
1 10
2 50
2 10

oid val
1 30
1 10
2 50
2 10

id date uid oid MaxVal
1 12/25 1 1 30
2 11/21 1 1 30

……
1 12/25 1 1 10
2 11/21 1 1 10
4 12/24 2 1 10

1
0
.
.
.
1

1
0
.
.
.
1

1
0
.
.
.
1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

As a Programming-by-Example System

• Synthesis process

• Iterating over the search depth for abstract queries

• Instantiate abstract queries in the current depth and check
results

• Dealing with ambiguity

• Ranking programs by heuristic

complexity, naturalness, constant coverage

• Provide a new example / restrict aggregation functions.

Implementation — Scythe

• Supported features:

• Select, Join, Group By, Aggregation,

• Subqueries, Outer Join, Exists, Union

• Unsupported

• Arithmetics, Pivot, Window functions, Limit, Insert

http://scythe.cs.washington.edu

http://scythe.cs.washington.edu

Evaluation

• Benchmarks from Stack Overflow:
• 57 used in development
• 57 top-voted posts
• 51 recent posts

• Benchmarks from prior work:
[Zhang et al. ASE’13]

• 23 textbook questions.
• 5 forum posts.

In total 193 benchmarks.
Avg. Example Size: 34 cells

• Algorithms
• Enumerative Search

[Udupa et al. PLDI’13]

• SqlSynthesizer

 (Decision tree algorithm)
[Zhang et al. ASE’13]

• Scythe
• Evaluation Condition

• 4G memory, 600s timeout

Evaluation

Scythe: 143

Enum: 92

Benchmark: 193

34x faster on avg.

59% can be answered
within 10 seconds

 34: missing features
 15: timeout
 1: failed to disambiguate

Reasons for failures

Scythe:
 18/28 in 120s
SQLSynthesizer:
 15/28 in 120s

Comparing with
SQLSynthesizer

Some Related Work

• Enumerative search
• Value-based Memoization [Udupa et al. PLDI’13]

• Search optimization with approximation
• Synthesizing regex from examples [Lee et al. GPCE’16]

• Monotonicity [Hu et al. PLDI’17]

• Synthesizing table manipulation programs
• Pruning search space using partial programs [Feng et al. PLDI’17]

Pruning Approach Pruning Overhead Pruning Power
Scythe Over-approximation Higher Higher

Feng et al. Constraint encoded
properties Lower Lower

Benefit from
value-based
search space
compression.

Algorithm: Decompose Search Process
With Abstract Queries

Search abstract
SQL queries

T1

id date uid
1 12/25 1
2 11/21 3
4 12/24 2

T2

oid val
1 30
1 10
1 10
2 50
2 10

Tout

oid date uid oid MaxVal

2 12/25 1 1 30

4 12/24 2 2 10

Instantiate
Abstract
Queries

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where □)
Join (Select id,
 Max(val)
 From T2
 Where □
 Group By oid
 Having □) T3
On □

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Select *
From (Select *
 From T1
 Where True)
Join (Select id,
 Max(val)
 From T2
 Where val < 50
 Group By oid
 Having True) T3
On T3.oid = T1.uid

Try demo on http://scythe.cs.washington.edu!

http://scythe.cs.washington.edu

