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ROBUSTNESS OBJECTIVE EXPERIMENTS

I: Die Waffe wird ausgestellt und durch den Zaun ubergeben. 
O: The weapon is issued and handed over by the fence. eos 
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1. Perturb test inputs randomly

2. Perturb test input with PGD attack

Output size distribution for perturbed inputs.

% of verified / vulnerable samples at different δ  
(Verification: 30 minutes timeout for each image)

Original Adversarial

Original Output: [6, 1], [0, 7, 4], [3] 
Adversarial: [6, 1, 1], [0, 1, 4, 3], [3, 3, 5, 3]

Machine Translation (Seq2Seq) Multi-MNIST (Image to text)

… …
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<START>Einkaufen vom Sofa aus
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Shopping from
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<END>
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CNN

We study the termination problem of variable length 
computing models (Image2Text, Seq2Seq)

…

<START>

y1

Encoder …

y2

x’

Q: Given a model M, a sample input x, does the 
model terminates in K steps for all inputs x’ = x + δ?

A: A new testing algorithm and the first verification 
algorithm to eval robustness of sequence models

x

Attacker
Model M

Sample Verifier

Find adversarial 
input x’

Prove no 
such x’ exists

Unknown(otherwise)

German to English 
27.6 BLEU score, Vocab size: 36,548

CNN — Relu-RNN  
91.2% test accuracy

Achieving Computational Robustness 
‣ ML as a service  
‣ Adaptive-time computation model 

Understanding and Debugging Models 
‣ Discover abnormal model behaviors (e.g., privacy) 

Canonical specification for testing variable-length models

Diff

Given model M, sample x, M should terminate in K steps on all inputs x’ close to x.
Greedy Decoder:

OUR APPROACH
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Testing: Adversarial Attacks Verification: Constraint Encoding
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Challenge 1: J(x) is Non-Differentiable

Challenge 2: Discrete Inputs (Seq2Seq) 
Continuous Relaxation with Gumbel Softmax

Discrete inputs: For discrete inputs, e.g., machine trans-
lation tasks, inputs are discrete tokens in a language vocab-
ulary. Formally, given the vocabulary V of the input lan-
guage, the input space X is defined as all sentences com-
posed of tokens in V , i.e., X = {(x1, . . . , xn) | xi 2
V, n > 0}. Given an input sequence x = (x1, . . . , xn),
we define the �-perturbation space of a sequence as all se-
quences of length n with at most d� · ne tokens different
from x (i.e., � 2 [0, 1] denotes the percentage of tokens that
an attacker is allowed to modify). Formally, the perturba-
tion space S(x, �) is defined as follows:

S(x, �) = {(x0
1, . . . , x

0
n) 2 V

n |
nP

i=1
[xi 6= x

0
i]  d� · ne}

3.2. Extending Projected Gradient Descent Attacks

In the projected gradient descent (PGD) attacks [25],2
given an objective function J(x), the attacker calculates the
adversarial example by searching for inputs in the attack
space to maximize J(x). In the basic attack algorithm, we
perform the following updates at each iteration:

x
0 = ⇧S(x,�) (x+ ↵rxJ(x)) (5)

where ↵ > 0 is the step size and ⇧S(x,�) denotes the pro-
jection of the attack to the valid space S(x, �). Observe that
the adversarial objective in Eq. (4) cannot be directly used
as J(x) to update x as the length of the sequence is not
a differentiable objective function. This hinders the direct
application of PGD to output-lengthening attacks. Further-
more, when the input space S is discrete, gradient descent
cannot be directly be used because it is only applicable to
continuous input spaces.

In the following, we show our extensions of the PGD
attack algorithm to handle these challenges.

Greedy approach for sequence lengthening We intro-
duce a differentiable proxy of `(x). Given an input x whose
decoder output logits are (o1, . . . , ok) (i.e., the decoded se-
quence is y = (argmax(o1), . . . , argmax(ok))), instead of
directly maximizing the output sequence length, we use a
greedy algorithm to find an output sequence whose length
is longer than k by minimizing the probability of the model
to terminate within k steps. In other words, we minimize
the log probability of the model to produce eos at any of
the timesteps between 1 to k. Formally, the proxy objective
J̃ is defined as follows:

J̃(x) =
kP

t=1
max

⇢
ot[eos]� max

z 6=eos
ot[z], �✏

�

where ✏ > 0 is a hyperparameter to clip the loss. This
is piecewise differentiable w.r.t. the inputs x (in the same

2Here the adversarial objective is stated as maximization, so the algo-
rithm is Projected Gradient Ascent, but we stick with the PGD terminology
since it is standard in the literature

sense that the ReLU function is differentiable) and can be
efficiently optimized using PGD.

3.3. Continuous relaxation for discrete inputs

While we can apply the PGD attack with the proxy ob-
jective on the model with continuous inputs by setting the
projection function ⇧S(x,�) as the Euclidean projection, we
cannot directly update discrete inputs. To enable a PGD-
type attack in the discrete input space, we use the Gumbel
trick [18] to reparameterize the input space to perform con-
tinuous relaxation of the inputs.

Given an input sequence x = (x1, . . . , xn), for each
xi, we construct a distribution ⇡i 2 R|V | initialized with
⇡i[xi] = 1 and ⇡i[z] = �1 for all z 2 V \ {xi}. The soft-
max function applied to ⇡i is a probability distribution over
input tokens at position i with a mode at xi. With this repa-
rameterization, instead of feeding x = (x1, . . . , xn) into
the model, we feed the Gumbel softmax sampling from the
distribution (u1, . . . , un). The sample x̃ = (x̃1, . . . , x̃n) is
calculated as follows:

ui ⇠ Uniform(0, 1); gi = � log(� log(ui))
p = softmax(⇡); x̃i = softmax( gi+log pi

⌧ )

where ⌧ is the Gumbel-softmax sampling temperature that
controls the discreteness of x̃. With this relaxation, we per-
form PGD attack on the distribution ⇡ at each iteration.
Since ⇡i is unconstrained, the projection step in (5) is un-
necessary.

When the final ⇡0 = (⇡0
1, . . . ,⇡n) is obtained from the

PGD attack, we draw samples x0
i ⇠ Categorical(⇡i) to get

the final adversarial example for the attack.

4. Verified Bound on Output Length

While heuristics approaches can be useful in finding at-
tacks, they can fail due to the difficulty of optimizing non-
differentiable nonconvex functions. These challenges show
up particularly when the perturbation space is small or when
the target model is trained with strong bias in the training
data towards short output sequences (e.g., the Show-and-
Tell model as we will show in Section 6). Thus, we design
a formal verification approach for complete reasoning of the
output-size modulation problem, i.e., finding provable guar-
antees that no input within a certain set of interest can result
in an output sequence of length above a certain threshold.

Our approach relies on counterexample search using in-
telligent brute-force search methods, taking advantage of
powerful modern integer programming solvers [15]. We en-
code all the constraints that an adversarial example should
satisfy as linear constraints, possibly introducing additional
binary variables. Once in the right formalism, these can be
fed into an off-the-shelf Mixed Integer Programming (MIP)
solver, which provably solves the problem, albeit with a po-
tentially large computational cost. The constraints consist
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of four parts: (1) the initial restrictions on the model inputs
(encoding S(x, �)), (2) the relations between the different
activations of the network (implementing each layer), (3)
the decoding strategy (connection between the output logits
and the inputs at the next step), and (4) the condition for it
being a counterexample (ie. a sequence of length larger than
the threshold). In the following, we show how each part of
the constraints is encoded into MIP formulas.

Our formulation is inspired by pior work on encoding
feed-forward neural networks as MIPs [3, 7, 32]. The im-
age captioning model we use consists of an image embed-
ding model, a feedforward convolutional neural network
that computes an embedding of the image, followed by a
recurrent network that generates tokens sequentially start-
ing with the initial hidden state set to the image embedding.

The image embedding model is simply a sequence of lin-
ear or convolutional layers and ReLU activation functions.
Linear and convolutional layers are trivially encoded as lin-
ear equality constraints between their inputs and outputs,
while ReLUs are represented by introducing a binary vari-
able and employing the big-M method [16]:

xi = max (x̂i, 0) ) �i 2 {0, 1}, xi � 0 (6a)
xi  ui · �i, xi � x̂i (6b)
xi  x̂i � li · (1� �i) (6c)

with li and ui being lower and upper bounds of x̂i which
can be obtained using interval arithmetic (details in [3]).

Our novel contribution is to introduce a method to extend
the techniques to handle greedy decoding used in recurrent
networks. For a model with greedy decoding, the token with
the most likely prediction is fed back as input to the next
time step. To implement this mechanism as a mixed integer
program, we employ a big-M method [36]:

omax =max
y2Y

(oy)

) omax � oy, �y 2 {0, 1} 8y 2 Y (7a)
omax  oy + (u� ly)(1� �y) 8y 2 Y (7b)
X

y2Y
�y = 1 (7c)

with ly, uy being a lower/upper bound on the value of oy
and u = maxy2Y uy (these can again be computed us-
ing interval arithmetic). Implementing the maximum in
this way gives us both a variable representing the value of
the maximum (omax), as well as a one-hot encoding of the
argmax (�y). If the embedding for each token is given by
{embi | i 2 Y}, we can simply encode the input to the fol-
lowing RNN timestep as

P
y2Y �y · emby , which is a linear

function of the variables that we previously constructed.
With this mechanism to encode the greedy decoding, we

can now unroll the recurrent model for the desired number
of timesteps. To search for an input x with output length

` (x) � K̂, we unroll the recurrent network for K̂ steps
and attempt to prove that at each timestep, eos is not the
maximum logit, as in (2). We setup the problem as:

max min
t=1..K̂


max
z 6=eos

ot[z]� ot[eos]

�
(8)

where o(k) represents the logits in the k-th decoding step.
We use an encoding similar to the one of Equation (7) to
represent the objective function as a linear objective with
added constraints. If the global optimal value of Eq. (8)
is positive, this is a valid counterexample: at all timesteps
t 2 [1..K̂], there is at least one token greater than the eos

token, which means that the decoding should continue. On
the other hand, if the optimal value is negative, that means
that those conditions cannot be satisfied and that it is not
possible to generate a sequence of length greater than K̂.
The eos token would necessarily be predicted before. This
would imply that our robustness property is True.

5. Target Model Mechanism

We use image captioning and machine translation mod-
els as specific target examples to study the output length
modulation problem. We now introduce their mechanism.

Image captioning models The image captioning model
we consider is an encoder-decoder model composed of two
modules: a convolution neural network (CNN) as an en-
coder for image feature extraction and a recurrent neural
network (RNN) as a decoder for caption generation [34].

Formally, the input to the model x is an m⇥ n sized im-
age from the space X = [�1, 1]m⇥n, the CNN-RNN model
computes the output sequence as follows:

i0 = CNN(x); h0 = 0
ot, ht+1 = RNNCell(it, ht)
yt = argmax(ot); it+1 = emb(yt)

where emb denotes the embedding function.
The captioning model first run the input image x through

a CNN to obtain the image embedding and feed it to the
RNN as the initial input i0 along with the initial state h0.
At each decode step, the RNN uses the input it and state ht

to compute the new state ht+1 as well as the logits ot repre-
senting the log-probability of the output token distribution
in the vocabulary. The output yt is the token in the vocabu-
lary with highest probability based on ot, and it is embedded
into the continuous space using an embedding matrix Wemb

as Wemb[yt]. The embedding is fed to the next RNN cell as
the input for the next decoding step.

Machine translation models The machine translation
model is an encoder-decoder model [30, 9] with both the
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Projected Gradient Descent (PGD) Attack

Complete but ExpensiveScalable but No Guarantee

Attack: δ = 0.25

Example:


