Knowing When To Stop: Evaluation and Verification of Conformity to Output-size Specs

Chenglong Wang ${ }^{1}$, Rudy Bunel², Krishnamurthy Dvijotham³, Po-Sen Huang³, Edward Grefenstette ${ }^{4}$, Pushmeet Kohli ${ }^{3}$ 1University of Washington, 2University of Oxford, 3Deepmind, 4Facebook AI Research

EXPERIMENTS

Given model \boldsymbol{M}, sample $\boldsymbol{x}, \boldsymbol{M}$ should terminate in \boldsymbol{K} steps on all inputs $\boldsymbol{x}^{\boldsymbol{y}}$ close to \boldsymbol{x}. Greedy Decoder
$y_{t+1}=\arg \max \left\{P\left(\cdot \mid x, y_{0 \cdot t}\right)\right\} \quad$ Input Space $\mathcal{X} \quad$ Perturbation Space $\mathcal{S}(x, \delta)$ Image $[-1,1]^{m \times n} \quad\left\{x^{\prime} \in \mathcal{X} \mid\left\|x^{\prime}-x\right\|_{\infty} \leq \delta\right\}$
$y_{t}=$ eos \quad Im $L(M(x))=l$ s.t. $\begin{aligned} & y_{t}=\operatorname{eos} \\ & y_{i} \neq \operatorname{eos} \quad \forall i<t\end{aligned} \quad$ Text $\quad V^{n} \quad\left\{x^{\prime} \in V^{n} \mid \sum_{i=1}^{n} \mathbb{1}\left[x_{i}=x_{i}^{\prime}\right] \leq \delta \cdot n\right\}$

OUR APPROACH

Testing: Adversarial Attacks
Verification: Constraint Encoding
Find x^{\prime} that maximizes $L\left(M\left(x^{\prime}\right)\right)$
$x^{\prime}=\Pi_{\mathcal{S}(x, \delta)}\left(x+\alpha \nabla_{x} J(x)\right)$
Project to $\mathcal{S}(x, \delta) \quad$ Obiective $L(M(x))$
Projected Gradient Descent (PGD) Attack
Challenge 1: $J(x)$ is Non-Differentiable Greedily minimize stop probability
$\tilde{J}(x)=\sum_{t=1}^{k} \max \left\{y_{t}[\operatorname{eos}]-\max _{z \neq 0 \cos } y_{t}[z], \epsilon\right\}$
Challenge 2: Discrete Inputs (Seq2Seq) Continuous Relaxation with Gumbel Softmax
$x=\left(x_{1}, \ldots, x_{n}\right) \Rightarrow \tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$

Scalable but No Guarantee

2. Perturb test input with PGD attack

Example:

1: De Waffe wird ausgestell und durch den Zaun ubergeben.
o: The weapon is issued and handed over by the fence. eos Adv Input: Die namen name descri und ames utt origin i.e. meet grammiatisch. Adve names name names grammaticaly
Advutut names sames
name names names names names names names names Advoutput: :names name names name names grammatic rames names names names names names names names
rames names names names names names names names names sames namess names names names names names
names names names names names names names names ames names names names names names names names
ames names names
rames names names names names names names names rames names names names names names names names
Machine Translation (Seq2Seq) German to English 7.6 BLEU score, Vocab size: 36,548

Perturb test inputs randomly
names names names names names names names eos

Multi-MNIST (Image to text)

CNN - Relu-RNN
91.2\% test accuracy

Output size distribution for perturbed inputs

${ }_{\text {output engst }}^{2}{ }^{1}$
\% of verified / vulnerable samples at different δ
Verfification: 30 minutes timeout for each image)

Attack: $\delta=0.25$

Original Output: [6, 1], [0, 7, 4], [3] Adversarial: [6, 1, 1], [0, 1, 4, 3], [3, 3, 5, 3]

